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ABSTRACT 

Generating hexahedral meshes is often an expensive process, which limits the use of high-fidelity numerical simulation methods 
for design. Hexahedral meshes can be generated by decomposing a geometric model into simpler meshable regions, but robustly 
propagating design modifications to the decomposed representation makes any attempt to update the mesh very challenging. In this 

paper, a virtual topology workflow enabling automatic generation of hex-dominant meshes is extended to propagate parametric 
modifications and feature changes to the decomposition and resulting mesh. Geometric and topological modifications are identified 
and linked to the decomposition through virtual topology relationships. Modified regions are localized and reasoning on the virtual 
decomposition enables their definition and associated meshing strategy to be updated. Instead of starting the meshing process from 
the beginning, only modified cells are re-meshed. This provides an efficient and automated method to propagate design changes 
down to the analysis model. 
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1. INTRODUCTION 

The increasing use of finite element analysis throughout a 
product lifecycle is limited by the ability to generate 

appropriate simulation models. This is especially true for the 
simulation of complex events, such as crash or large 
displacement analyses, where generating the hexahedral 
(hex) elements preferred for this task is very user-intensive 
work. Simulation-based design depends on the ability to 
quickly generate analysis models for many design variations 
to run an optimization procedure. This is incompatible with 
the manual analysis set up required in a typical hex meshing 

workflow. Analysis requirements are also prone to change, 
especially within coupled multi-physics analyses where 
analysis results from one domain dictate updates for another. 
For example, if a model is deformed by wear or thermal 
expansion and is used as an input for subsequent analysis 
these changes must be reflected in the downstream analysis 
model.  

Many tools have been developed during the last decades in 

an attempt to automate hex meshing with various results [1]. 
They include direct methods such as Whisker Weaving [2] 
and Plastering [3], as well as indirect methods such as tet-
combination [4]. Decomposition-based methods partitioning 
the design geometry into smaller sub-regions for which a 

simple meshing strategy can be found are the most widely 

used methods. These meshing strategies include mapping 
[5], sub-mapping [6] and sweeping [7], where a quad mesh 
of a source face is swept in order to generate 3D hex 
elements. Even if these tools fail to tackle generic 
geometries, they can be integrated in an incremental 
decomposition workflow to significantly alleviate the 
workload of generating meshes. Virtual topology-based 
decomposition, coupled with cellular modelling for meshing 

workflows, has shown promising results and flexibility [8]ï
[10]. The benefits of using virtual topology (VT) for 
generating meshes without altering the CAD model 
definition were first presented by Sheffer et al. [11]. In the 
context of this work, a cellular model is a decomposition of 
space into cells of analysis significance. The interfaces in the 
model are robustly captured and are cells in their own right 
[12]. This structure means that the links between the 
decomposed virtual representations and the design model 

can be robustly maintained [13]. In addition, as a model is 
decomposed for meshing, the cellular representation 
maintains connections between the subset domains that 
enable both the automation of downstream meshing and the 
localization of modified cells after design changes. 

After design changes, the mesh needs to be updated to 
remain an accurate representation of the model. In the 
Computer-Aided Design (CAD) environment, updating the 
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design is straightforward, either by changing parameters 
associated to the model or by adding/removing features in 
the construction tree. However, applying the same design 
modification to geometrically identical models that are 
constructed with different feature orders may produce 

unexpected differences that may be inadvertently 
propagated to the analysis model.  

Direct geometric editing (synchronous technology) is also 
available, where the user can interactively manipulate 
geometric entities without requiring access to the 
construction tree, allowing modifications of the model 
outside of the design environment. However, the analysis 
model is often constructed in a separate Computer-Aided 

Engineering (CAE) package, where such manipulations will 
break the link to the original CAD model, and CAD-CAE 
integration is a major bottleneck toward automation[14]. As 
a result, the mesh cannot be as easily updated as the 
construction tree and parameters are lost during the transfer 
across packages. The user is often tasked to update the CAD 
model before exporting it to the meshing environment where 
many pre-processing activities, such as clean-up operations, 

carried out to create the previous analysis model must be 
repeated. Furthermore, most automated tools for hex-mesh 
generation [2]ï[4] do not offer the ability to efficiently 
update the mesh and require the whole decomposition 
process to be repeated. One challenge is that decomposition 
tools are often used to partition the design model 
geometrically to create a decomposed representation fit for 
hex meshing. These geometric partitions usually break the 

links between the design model and the decomposed 
representation, meaning that even if design changes can be 
identified there are no relationships that can be exploited in 
order to robustly update the decomposition. The major 
challenges to automatically updating a hex-dominant mesh 
created from a decomposition via the approach proposed 
herein are to: 

¶ Identify the geometric and/or topological changes 

resulting from a design update. 

¶ Reflect design amendments on the analysis model 

by exploiting the virtual topology relationships 
stored when generating the initial decomposition. 

¶ Update the decomposition used for meshing and 

ensure it remains valid. 

¶ Minimize the computational expense by re-using 

as many existing elements as possible. 

¶ Maintain mesh quality after update. 

This work proposes to extend a virtual topology 
decomposition workflow to address this problem, by using 
an integrated cellular model to reflect parametric and feature 
changes on the mesh. This paper first describes the virtual 

topology framework used for automatic decomposition and 
hex-dominant meshing. Then, handling feature and 
parametric perturbations for re-meshing is presented. This is 
done by first localizing the modifications, then updating the 
analysis topology and finally updating the mesh locally. The 
main contribution is the implementation of a cellular mesh 
and interface management to enable mesh updates even 

when the topology of the model is significantly altered. 
Considerations on meshing strategies are presented to help 
update the decomposition and the mesh.  

2. RELATED WORK 

Mesh update has been a topic of research for many years and 
includes several domains such as mesh morphing, mesh 

adaption and re-meshing. Mesh morphing [15] consists of 
mapping an initial mesh onto a new geometry which is 
similar to the initial geometry, either to account for the 
model deformation, or to re-use an existing mesh on a 
similar geometry (e.g. a design update). The mapping of 
nodes requires knowledge of both the entities mapping 
between the geometries and the node to entity associativity 
in the original mesh. The mesh topology must remain 
constant to ensure a correct mapping.  

Mesh adaption [16] consists of modifying a mesh against 
known quantities. It can be an iterative process to minimize 
the simulation error while solving the computational 
problem iteratively. Parametric modification in an 
optimization loop can also drive mesh adaption procedures. 
The mesh can be locally refined or coarsened, with or 
without connectivity (or number of elements) modifications. 
Sheffer and ¦ngºr have proposed a dual representation using 

both the boundary and a parametric representation to link 
design modifications and mesh adaption procedures [17]. In 
particular, the history of virtual operations applied for 
simplification is retained and automatically mapped on the 
updated design model before meshing. Mesh updating is 
done by moving the elements to the new geometry, and then 
adjusting the mesh quality by using techniques such as 
whisker-sheet operations. Feature displacements have been 

investigated recently by Shen et al. [18], using mesh 
deformation and the mesh is refined using density fields 
extracted from the initial mesh. However, adaption 
approaches are limited to simple parametric perturbations, as 
the mesh topology needs to be consistent to be mapped.   

Parametric perturbations can induce topological 
modifications on a model. To this extent, Van Der Meiden 
and Bronsvoort have defined a method to relate the range of 

parameters to topological entities, therefore identifying 
critical parameters of interest [19]. Sun et al. have proposed 
a method using virtual topology to deform a surface mesh in 
the presence of simple topological perturbations [20]. 

Re-meshing is employed whenever mesh generation 
methods need to be re-applied either locally or globally to 
the model. For example, fully re-meshing a model can be 
avoided after feature insertion if the feature is meshed with 
new elements and connected to the existing mesh. Smit and 

Bronsvoort have successfully implemented a cellular 
modelling-based approach to tetrahedral re-meshing [21]. 
After capturing the feature differences between two models 
and their interactions, all the valid original nodes are mapped 
to the new model, and new elements are created to fill the 
gaps. However, in the absence of any link or equivalence 
between elements and geometric cells, all the nodes need to 
be classified and processed for re-meshing, which can be 

slow for very large meshes. 



 

Figure 1. Virtual topology-based workflow for automatic decomposition and meshing. 

In this paper, hex-dominant re-meshing is addressed using a 
cellular representation of a virtually decomposed model. 
Only the sub-regions that need to be modified to 
accommodate the design change are identified and re-
meshed, while maintaining the constraints of a structured 

mesh. This allows design variations to be automatically 
propagated throughout a virtual topology workflow and 
reflected on the final mesh (Figure 4). 

3. VIRTUAL TOPOLOGY DECOMPOSITION 
AND MESHING 

This section describes a virtual topology-based workflow 
that integrates various reasoners for automatic 
decomposition and meshing (see Figure 1).  

The process takes a CAD model as an input and has two 
main outputs. The first is a topological description of the 
decomposed model called analysis topology, contained in a 

Common Data Structure (CDS). The second is a mesh in a 
CAE environment that is exported to a neutral format file. 
The original topology is first extracted from the CAD to the 
CDS, and a series of virtual topology split operations are 
applied to create the analysis topology. This analysis 
topology contains the virtual decomposition and is linked to 
the original design topology through virtual topology 
relationships stored in the CDS. Once the model has been 
virtually decomposed, a mesh can be automatically 

generated by using the meshing recipe reasoner (section 3.4) 
and the mesh reasoner (section 3.5). Virtual topology allows 
more freedom for preparing a model for meshing and 
provides much more flexibility since the actual geometry is 
not modified. Instead of storing partitioning surfaces, only 
the method to construct them is stored (along with virtual 
geometry curves, curves that are not connected to the B-Rep 
design model but exist in the CAD environment, see section 

3.3) and passed to the meshing environment to generate the 
mesh. 

3.1 Design topology extraction to CDS 

The role of the common data structure (CDS) is to convey 
information between the different steps and packages 
involved in the automated virtual workflow. It is based on an 

external SQL relational database, similar to the one 
presented by Tierney et al. [22], [23]. The relations relevant 
to virtual topology decomposition and meshing are shown in 
Figure 1. Other data that does not fit within the CDS is 
transferred using neutral formats. For example, virtual 

geometry can be transferred using STEP or Parasolid format. 
Meshes can be transferred using formatted text files, such as 
bulk data files that contain nodal information and element 
connectivity. The CDS contains the links to connect these 
various representations. 

The CDS is initialized by querying all the entities contained 
in the CAD model through a topology extraction tool (Figure 
1). Each entity is assigned a unique identifier when added to 

the database, which is linked to the name and/or tag attribute 
from the CAD system. Geometric attributes such as 
coordinates for vertices or mid-points for edges are also 
stored to aid tracking entities. Higher dimension entities can 
also be identified from their bounding entities. 

The topological definition of the CAD model is extracted 
and stored in a design topology relation, which is duplicated 
in an analysis topology relation. Both topology relations 

contain a cellular representation of the model, with each 
topologic cell defined recursively from lower dimension 
elements forming their boundaries, along with the relative 
orientation between the bounded cell and its boundary.  

To enable virtual topology manipulations, a virtual topology 
relation stores the history of the virtual operations applied on 
the design topology to create the decomposition in the 
analysis topology. The virtual topology relation contains the 

link between the virtual entities (subset or superset 
depending on the virtual split or merge operation) and their 
host entities.  

3.2 Decomposition reasoners 

Regions suitable for hex mesh generation are identified 
using a sequence of decomposition reasoners within the 
proposed virtual topology workflow. A decomposition 
reasoner encapsulates an algorithm to identify regions 
suitable for a specific meshing method (e.g. sweeping, 
mapping, templateé) in a generic way. Implementation 

specific routines are handled outside of the reasoner, which 



can be seen as a black box from the point of view of the 
process. The input is a design model with its topology 
extracted in the CDS. The output is splitting information 
which is used by the virtual topology tool to partition the 
domain, and a meshing strategy attribute specific to the 

reasoner. The power of this virtual topology approach is that 
multiple decomposition reasoners (sweep, multi-sweep, 3D 
block, 2D blocké) can be integrated seamlessly within one 
workflow 

All the geometric queries of the reasoners are made through 
a VT translator tool, which uses information stored in the 
CDS and the combination of the CAD and virtual geometry 
to query the analysis topology model and not the design 

model. Hence, the reasoner can operate on a model that has 
been virtually decomposed beforehand. This ensures that 
reasoners can be used one after another and in any order, but 
also allows virtual defeaturing to be carried out before the 
decomposition and not just as a final step before meshing. 
This ability to operate in the presence of virtual topology is 
critical for a robust analysis workflow. 

After the reasoners have identified which region to extract, 

the splitting information is created. This is done by 
identifying which entities need to be partitioned, and what 
existing entities can be used to do so. Necessary geometric 
information such as points or curves to complete the 
definition of a split are also created by the decomposition 
reasoners. 

3.3 Virtual Topology reasoners 

Virtual topology uncouples the topological definition of a 
model from the geometrical one. This enables virtual 
generation of a meshed analysis model without altering the 

design model. Two VT reasoners are used in this process. 
The VT translator transfers geometric information between 
the real CAD model and the virtually decomposed model in 
the CDS. The VT tool manipulates topological 
representations in the CDS to clean or decompose a model, 
by applying operators as described in [8], [11]. These 
operators ensure that the analysis topology remains valid 
after topological manipulation, with the relative orientation 

of the virtual entities and the modifications properly 
recorded and updated in the CDS.  

The VT translator processes the geometrical splitting 
information from the decomposition reasoner to create in the 
CAD environment all the curves required to define 
partitioning faces. These curves are referred to as virtual 
geometry, since they only exist as a layer of geometry 
independent from the design model in the CAD 
environment. Virtual geometry curves are used as an input 

by the VT tool to virtually partition the model to create the 
analysis topology. This analysis topology is linked to the 
design topology by a series of VT relationships resulting 
from the application of VT operators, stored in the CDS. 

Virtual topology requires definition of virtual entities to 
formalize the relationship between virtual entities and their 
host entities (if any) [11]: 

- Parasite entities: entities that did not exist in the original 

topology but lie on an existing entity of higher 

dimension (i.e. an edge lying on the face it splits or a 

face that lies in the interior of a body).  

- Subset entities: subsets of host entities that are split by 

a parasite entity of lower dimension. 

- Orphan entities: entity without host (e.g. an edge in the 

interior of a body bounding only parasite faces). 

A virtual split operation uses a parasite entity on a host entity 
of higher dimension to create subset entities. For example in 
Figure 2(a), a face f1 which is a bounded portion of a 
geometric surface can be split by adding a parasite edge e1 

which is a bounded portion of a curve. The parasite edge lies 
on the host shape to divide it into two subset faces f2 and f3, 
but a single surface definition remains.  

A virtual merge operation on the other hand groups multiple 
host entities into one by removing lower dimensional entities 
common to the hosts at their interfaces. For example, in 
Figure 2(b), a vertex v2 bounding only two edges can be 
removed to generate one superset edge e4. A merge 

operation is required to update a modified decomposition 
since it enables the recombination of adjacent cells locally, 
without having to undo the whole decomposition operation. 
It can also be used to simplify and clean the model definition 
to facilitate mesh generation. 

 

Figure 2. (a) The face f1 is virtually split by inserting 
the parasite edge e1, and (b) edges e2 and e3 are 
merged into e4 by virtually removing v2. Red 
entities are virtual geometry. 

Virtual parasites, subsets and orphan edges are 
superimposed on the CAD design model as virtual geometry. 
All their links with the analysis model only exist in the CDS, 
and their purpose is to provide geometric information that 

does not exist in the original design model.  They are created 
by a decomposition reasoner and can be easily transferred 
between packages using a neutral format such as STEP. 
Once added in the CDS, they can be used to aid virtual 
topology manipulations. 

3.4 Meshing recipe reasoner 

The meshing recipe reasoner is used to translate the different 
meshing strategies identified by the decomposition 



reasoners into compatible mesh controls for hex-dominant 
mesh generation. The input is a CDS containing the analysis 
topology of the decomposed model along with the meshing 
strategy identified for each volume cell, and geometric 
information, such as aspect ratios of regions and curve 

lengths, previously extracted from the CAD. The reasoner 
outputs optimized division numbers for every curve and 
meshing methods for faces to the CDS. 

Different decomposition reasoners can be applied to the 
model which will result in different meshing strategies with 
different priorities. The specific reasoners used in this work 
sought to create an anisotropic hex meshing recipe which 
was conformal throughout. 

Sweeping strategies are converted into constraints on the 
number of elements following the methods applied in [9]. 
Source faces of sweepable regions can either be paved or 
mapped, while wall faces must be mapped meshed. Figure 3 
shows how the meshing constraints propagate through the 
model, and the resulting mesh. Soft or hard goals on division 
numbers are applied on each edge of the model. A hard goal 
ensures a fixed division number will be applied (e.g. number 

of elements through thickness), while soft goals are 
optimized to meet the constraints. Constraints are checked to 
remove overly constraining mapping equalities. All the 
necessary geometric information is contained in the CDS, 
hence this reasoner is package independent.  

 

Figure 3. Flow of meshing constraints and 
associated mesh. 

The LPSolve [24] package is used to optimize each 
individual number of elements on curves, by implementing 
a revised simplex algorithm. As a result, the mesh is fully 
constrained, which ensures order independence during the 
meshing step, and guarantees a conformal mesh will be 
obtained at interfaces. 

3.5 Mesh reasoner 

Once the meshing recipe has been generated, the mesh can 
be generated in a CAE environment using the meshing 

reasoner. The input to the mesh reasoner is the CAD model 
and the CDS containing the meshing recipe. The output is a 
conformal mesh.  

The virtual partitioning surfaces are explicitly rebuilt from 
the virtual geometry and used to split the geometry of the 
model, hence becoming interfaces between sub-regions. 
Depending on the package used, the model is transferred to 
the meshing environment before or after the geometric 

decomposition which will create all the analysis topology 
entities. Mesh densities contained in the meshing recipe are 
applied on each curve.  

All the interfaces are checked and meshed first to ensure a 
conformal mesh is obtained. The 2D surface meshes of all 

the interfaces are stored in a common neutral format file, 
with elements grouped by interface identifiers. This step is 
required to enable mesh manipulation later, but it also offers 
the possibility of the 3D meshes being generated on the 
individual cells in parallel. All the source faces of sweepable 
regions are meshed first, and hex elements are created by 
sweeping. Residual regions, where there is no known hex-
meshing strategy identified by the reasoners, are tet-meshed 

at the end, after a layer of pyramid elements has been 
inserted to conform to the quad mesh of the interfaces. If the 
decomposition reasoners have identified hex-meshing 
strategies other than sweeping, the relevant meshing 
algorithms can be applied by the meshing reasoner.  

The mesh is then exported in a neutral format file such as a 
Nastran input deck. This format enables the mesh to be 
transferred into different meshing packages, and to be edited 

simply by editing the mesh file. 

3.6 Integrated workflow 

The choice and sequence of decomposition reasoner to apply 
is left to the user, while pre-defined workflows can be 
identified for specific classes of geometries. This sequence 
will define which meshing methods will be used, since the 
same region could be identified by different reasoners for 
different hex-meshing methods. An example of a virtual 
decomposition workflow for automatic meshing is shown in 
Figure 1. It includes a thin-sheet decomposition reasoner for 

identifying thin regions which can be sweep-meshed through 
their thickness and a long-slender decomposition reasoner 
for identifying regions with one large dimension suitable for 
sweeping.  Models of thin-walled components are suitable 
for thin-sheet extraction, where regions with one small 
dimension compared to the other two offer a simple sweep-
meshing strategy [25]. Pairs of large parallel faces are 
discretized and imprinted one onto another in order to 

calculate their intersection in the parametric space. The 
result is then projected back on the boundary representation 
to identify appropriate partitioning geometry, which will be 
used to create the virtual geometry and the virtual split 
operations for sweep meshing through the thickness. This 
integrated virtual topology workflow effectively 
demonstrates multi-sweeping in thin-walled components, 
with explicit interfaces in the decomposed cellular model 
facilitating multi-directional sweeping. 

Truss-like structures, or thin-walled structures with their thin 
sheet removed, feature a lot of long-slender regions. A 
similar approach to Sunôs method [26] is used to extract such 
regions. Long edges with a large aspect ratio relative to the 
width of the faces they bound are identified and grouped into 
loops. These loops are then used to find loops of mappable 
faces, which verify the conditions for sweep meshing. Cap 
faces are identified as a loop of virtual edges. There may also 

be an offset applied if the geometry is prone to the existence 
of skewed elements. This virtual geometry is then used to 
help virtually split the analysis model. 



 

Figure 4. Workflow for updating the decomposition and mesh after design change.

Region attributes such as whether a region is thin-sheet or 
long-slender are stored in the mesh recipe relation of the 
CDS. This relation, along with the cellular model of the 
analysis topology, informs the reasoner tools and enables 
automatic identification of the meshing recipe. The meshing 
recipe is then stored in the CDS, describing face and edge 
meshing constraints in terms of size or number of elements.  

Other decomposition reasoners have also been developed to 

identify simple sweepable regions or to decompose models 
into axisymmetric regions and repeated cyclic sectors, 
providing a minimal meshable representation [27]. 

4. UPDATING THE DECOMPOSITION 

Figure 4 shows how the virtual workflow described in the 
previous section can be extended to handle design 
modifications to update the decomposition and ultimately 
the mesh. This section describes first how design 
modifications are identified by comparing the new design 
with the one stored in the CDS. Then, the constraints 

stemming from the hex-meshing strategies assigned to 
regions guide the update of the virtual geometry and the 
analysis topology. This reasoner takes a CAD model with a 
design change and the CDS associated with the previous 
version of the design as an input, and outputs an updated 
CDS for the new design (with updated virtual geometry), 
which can be used to update the mesh. 

Modifications of the design can have various effects on the 

boundary representation of a model, especially for 
decomposed models where the number of boundary entities 
is increased. Figure 5 shows an example of a model 
decomposed for sweep-meshing undergoing various design 
modifications. Any design changes on a model can be 
classified into the following types: 

- Topology only modifications, where the boundary 

representation is modified but not the shape. For 

example, introducing imprints on a face subdivides the 

face but the underlying surface geometry remains the 

same. 

- Geometric only modifications, e.g. Figure 5(c) where 

only the geometry of the design is modified by 

changing the part length. All topology remains 

unchanged. 
- Geometry and topology modifications, e.g. where new 

features, such as bosses, fillets etc. are added or 

removed from a model, Figure 5 (d), or where a 

parametric perturbation results in an additional 

topology change. 

In order to update the decomposition, it is necessary to 
propagate the aforementioned modifications to the analysis 
topology. More specifically, the parasite entities used to 

virtually decompose the model must be modified (if 
necessary) alongside the virtual geometry in order to enable 
the mesh to be updated. In this work, design modifications 
can affect: 

- Only the analysis model geometry. In this case it is 

necessary to determine if the virtual geometry needs to 

be updated, e.g. in Figure 5 (c) where the change in part 

length L requires the invalid virtual geometry (dashed 

red lines) to be morphed to the new model boundary. 
- Both the analysis topology and virtual geometry, e.g. 

feature modifications will trigger geometric and 

topological modifications to propagate to the analysis 

model, such as removing the fillet in Figure 5 (d). 

If the parametric perturbation has modified the design 
topology, then the analysis topology is also modified. 
However, it is possible the topological connectivity of 
parasite entities can be modified without changing the design 
topology. For example, the thickness t of the bottom pad is 
increased in Figure 5 (e), resulting in parasite entities whose 

configuration is now altered. The two parasite faces were 
disconnected in the original decomposition. However, in the 
updated decomposition, Figure 5 (e), they now share a 
common edge (in dashed bold). These changes can be subtle 
but will have a profound impact on updating the mappings 
required to update the mesh automatically. 



 

Figure 5. (a) initial decomposition, (b) corresponding meshing strategies, (c) geometric only change, (d) 
topological modification and (e) only the analysis topology is modified, one edge has an invalid projection.

 

Figure 6. Analysis topology before and after design modification for various configurations.



Figure 6 shows procedures used in this work to determine 
the classification for the various geometric and topological 
configurations for decomposition update that can arise upon 
design modification (virtual faces shown in dark grey for 
visualization). This structure has been determined to be the 

most suitable for the mesh types being used in this paper, 
however a different structure or ordering may be better 
suited to different models, or the requirements of different 
analysts. Although only design changes involving 
geometrical modifications are used to illustrate the 
workflow, topological only modifications are handled in the 
same way. Some configurations are easy to update, e.g. for 
a purely geometric update where both the boundary topology 

and virtual geometry have not changed. However, the top 
right configuration is very challenging to update, as the 
bottom host face on which the boss edges were projected has 
become two unconnected faces due to the extension of the 
pocket. This is related to the persistent naming problem [28], 
where parametric modifications trigger topology changes 
that modify the underlying geometry.  

The workflow in Figure 9 describes the method used to 

identify the aforementioned design changes and to update a 
virtually decomposed model after such design changes. 
Topological and geometrical modifications are identified 
from the CAD model. After the design modifications have 
been identified at the design topology level, analysis model 
modifications need to be identified. This is done by checking 
if the virtual decomposition history can be mapped on the 
new design, by checking if all the virtual splitting entities 

still lie within their hosts. Mapping constraints inferred from 
hex-meshing strategies are checked to ensure they are still 
valid and can inform the update of projected virtual 
geometry. Finally, all the candidate bodies for re-meshing 
are identified. 

4.1 Tracking parametric and feature 
modifications 

The CDS contains a representation of both the analysis 
topology and the original design topology independently 
from the CAD environment and also stores the virtual 
topology relationships required to transform one into the 
other. The original topology in the CDS is used to identify 

and classify both geometric and topological modifications 
after the CAD model has been updated. The VT relationships 
provide the link to map the changes in design to the analysis 
topology. 

This section will describe how changes to the model in the 
CAD environment are propagated to the original topology in 
the CDS and then to the analysis topology describing the 
decomposition. The key point is that all entities in the 

original topology and analysis topology are linked to those 
in the CAD/CAE environment through two different 
attributes:  

1) Name attributes attached to entities in the CAD 
environment. Any unique identifier offered by the CAD 
system (name, tag, color ...) can be used, provided that is can 
be assigned to an entity, queried and will persist between 
different modelling sessions. 

2) Geometric attributes defining unique geometric 
identifiers of entities in the CAD environment, e.g. the center 
point of the edges, as well as the coordinates of its end 
vertices.  

Both attributes are necessary, as structured interrogation of 

them allows the geometric and topological modifications to 
the design to be determined as outlined in the following 
sections. Once modified entities have been identified, each 
entity is mapped to an entity in the analysis topology through 
a series of VT relationships and topological queries. This 
enables the modifications to be identified and the entities of 
the analysis topology to be classified. 

This classification is done from lower dimension entities to 

higher dimension ones, since any modification on the 
boundaries of an entity will propagate to the entity, while an 
entity can be modified without having its boundaries 
modified. While some CAD packages offer the ability to 
attach name attributes to vertices, other packages have not 
implemented this capability. Coordinates used as geometric 
attributes are not enough to classify vertices in the absence 
of name attribute, as a design change can move a vertex to 

the location of a different vertex that is also modified. 
However, the matching of the geometric attribute for edges 
includes checking the coordinates of both the mid-point and 
the bounding vertices. Therefore, the edge classification is 
based on the vertex classification, but not only as the mid-
point factors as well. In this implementation, edges are 
classified first, so that vertex classification can be guided by 
the bounded edges classification. 

 

Figure 7. a) Original decomposition, b) the 
decomposition is not updated after a fillet is added, 
c) original entities classification, d) analysis 
entities classification, e) open design loops are 
closed and new virtual entities are identified, f) 
open analysis loops are closed and g) updated 
decomposition. 






